Quiz 8 Solutions

1) Solve the following initial value problem.

$$2\frac{d^2x}{dt^2} - 5\frac{dx}{dt} - 3x = 0$$
$$x(0) = 0$$
$$x'(0) = 7$$

The characteristic polynomial is $2r^2 - 5r - 3 = (2r + 1)(r - 3) = 0$ which gives roots r = -1/2, 3. So, the general solution is

$$x(t) = c_1 e^{-t/2} + c_2 e^{3t}.$$

The initial conditions give the equations

$$c_1 + c_2 = 0$$
$$-\frac{1}{2}c_1 + 3c_2 = 7,$$

which have solutions $c_1 = -2$ and $c_2 = 2$. So, the solution to the given IVP is

$$x(t) = -2e^{-t/2} + 2e^{3t}.$$

2) Solve the following initial value problem.

$$t^{2}\frac{d^{2}x}{dt^{2}} - 6x = 0$$
$$x(1) = 0$$
$$x'(1) = 1$$

The characteristic polynomial is $r(r-1)-6=r^2-r-6=(r+2)(r-3)=0$ which gives roots r=-2,3. So, the general solution is

$$x(t) = \frac{c_1}{t^2} + c_2 t^3.$$

The initial conditions give the equations

$$c_1 + c_2 = 0$$
$$-2c_1 + 3c_2 = 1,$$

which have solutions $c_1 = -1/5$ and $c_2 = 1/5$. So, the solution to the given IVP is

$$x(t) = -\frac{1}{5t^2} + \frac{t^3}{5}.$$

3) Find the general solution to the following differential equation.

$$\frac{d^2x}{dt^2} + 4\frac{dx}{dt} + 13x = 5e^{2t}$$

The characteristic polynomial for the homogeneous solution is $r^2 + 4r + 13 = (r+2)^2 + 9 = 0$ which gives roots $r = -2 \pm 3i$. So, the homogeneous solution is

$$x_H(t) = c_1 e^{-2t} \cos(3t) + c_2 e^{-2t} \sin(3t).$$

For a particular solution, we try $x_P(t) = Ae^{2t}$. Running this through the differential equation gives

$$4Ae^{2t} + 4(2Ae^{2t}) + 13Ae^{2t} = 25Ae^{2t} = 5e^{2t}$$

which means A = 1/5. So, the general solutions is

$$x(t) = c_1 e^{-2t} \cos(3t) + c_2 e^{-2t} \sin(3t) + \frac{1}{5} e^{2t}.$$

4) Find the general solution to the following differential equation.

$$\frac{d^2x}{dt^2} + 5\frac{dx}{dt} + 4x = 16t^2$$

The characteristic polynomial for the homogeneous solution is $r^2 + 5r + 4 = (r+4)(r+1) = 0$ which gives roots r = -4, -1. So, the homogeneous solution is

$$x_H(t) = c_1 e^{-4t} + c_2 e^{-t}.$$

For a particular solution, we try $x_P(t) = At^2 + Bt + C$. Running this through the differential equation gives

$$2A + 5(2At + B) + 4(At^2 + Bt + C) = 4At^2 + (10A + 4B)t + (2A + 5B + 4C) = 16t^2.$$

This means we need to solve the following equations.

$$4A = 16$$
$$10A + 4B = 0$$
$$2A + 5B + 4C = 0$$

The solutions are easily seen to be A=4, B=-10, and C=21/2. So, the general solutions is

$$x(t) = c_1 e^{-4t} + c_2 e^{-t} + 4t^2 - 10t + \frac{21}{2}.$$