Intro. to ODEs

Quiz 8 Solutions

1) Solve the following initial value problem.

$$
\begin{aligned}
2 \frac{d^{2} x}{d t^{2}}-5 \frac{d x}{d t}-3 x & =0 \\
x(0) & =0 \\
x^{\prime}(0) & =7
\end{aligned}
$$

The characteristic polynomial is $2 r^{2}-5 r-3=(2 r+1)(r-3)=0$ which gives roots $r=-1 / 2,3$. So, the general solution is

$$
x(t)=c_{1} e^{-t / 2}+c_{2} e^{3 t}
$$

The initial conditions give the equations

$$
\begin{aligned}
c_{1}+c_{2} & =0 \\
-\frac{1}{2} c_{1}+3 c_{2} & =7
\end{aligned}
$$

which have solutions $c_{1}=-2$ and $c_{2}=2$. So, the solution to the given IVP is

$$
x(t)=-2 e^{-t / 2}+2 e^{3 t}
$$

2) Solve the following initial value problem.

$$
\begin{aligned}
t^{2} \frac{d^{2} x}{d t^{2}}-6 x & =0 \\
x(1) & =0 \\
x^{\prime}(1) & =1
\end{aligned}
$$

The characteristic polynomial is $r(r-1)-6=r^{2}-r-6=(r+2)(r-3)=0$ which gives roots $r=-2,3$. So, the general solution is

$$
x(t)=\frac{c_{1}}{t^{2}}+c_{2} t^{3}
$$

The initial conditions give the equations

$$
\begin{aligned}
c_{1}+c_{2} & =0 \\
-2 c_{1}+3 c_{2} & =1
\end{aligned}
$$

which have solutions $c_{1}=-1 / 5$ and $c_{2}=1 / 5$. So, the solution to the given IVP is

$$
x(t)=-\frac{1}{5 t^{2}}+\frac{t^{3}}{5}
$$

3) Find the general solution to the following differential equation.

$$
\frac{d^{2} x}{d t^{2}}+4 \frac{d x}{d t}+13 x=5 e^{2 t}
$$

The characteristic polynomial for the homogeneous solution is $r^{2}+4 r+13=$ $(r+2)^{2}+9=0$ which gives roots $r=-2 \pm 3 i$. So, the homogeneous solution is

$$
x_{H}(t)=c_{1} e^{-2 t} \cos (3 t)+c_{2} e^{-2 t} \sin (3 t) .
$$

For a particular solution, we try $x_{P}(t)=A e^{2 t}$. Running this through the differential equation gives

$$
4 A e^{2 t}+4\left(2 A e^{2 t}\right)+13 A e^{2 t}=25 A e^{2 t}=5 e^{2 t}
$$

which means $A=1 / 5$. So, the general solutions is

$$
x(t)=c_{1} e^{-2 t} \cos (3 t)+c_{2} e^{-2 t} \sin (3 t)+\frac{1}{5} e^{2 t}
$$

4) Find the general solution to the following differential equation.

$$
\frac{d^{2} x}{d t^{2}}+5 \frac{d x}{d t}+4 x=16 t^{2}
$$

The characteristic polynomial for the homogeneous solution is $r^{2}+5 r+4=$ $(r+4)(r+1)=0$ which gives roots $r=-4,-1$. So, the homogeneous solution is

$$
x_{H}(t)=c_{1} e^{-4 t}+c_{2} e^{-t} .
$$

For a particular solution, we try $x_{P}(t)=A t^{2}+B t+C$. Running this through the differential equation gives
$2 A+5(2 A t+B)+4\left(A t^{2}+B t+C\right)=4 A t^{2}+(10 A+4 B) t+(2 A+5 B+4 C)=16 t^{2}$.
This means we need to solve the following equations.

$$
\begin{aligned}
4 A & =16 \\
10 A+4 B & =0 \\
2 A+5 B+4 C & =0
\end{aligned}
$$

The solutions are easily seen to be $A=4, B=-10$, and $C=21 / 2$. So, the general solutions is

$$
x(t)=c_{1} e^{-4 t}+c_{2} e^{-t}+4 t^{2}-10 t+\frac{21}{2} .
$$

